
AElf
Release 0.6.0

Dec 10, 2020

Contents

1 Overview 1
1.1 Common dependencies . 1

1.1.1 Pre-setup for Windows users . 1
1.1.2 Pre-setup for macOS users . 1
1.1.3 Node js . 2

1.2 Building sources and development tools . 2
1.2.1 Windows build tools . 2
1.2.2 Git . 3
1.2.3 Development framework - dotnet core sdk . 3
1.2.4 Protobuf . 4

1.3 Setup Boilerplate . 5
1.3.1 Clone the repository . 5
1.3.2 Build and run . 5
1.3.3 More on Boilerplate . 9
1.3.4 Next . 10

2 Write Contract 11
2.1 Smart contract implementation . 11

2.1.1 Greeter contract . 11
2.1.2 Create the project . 11
2.1.3 Defining the contract . 12
2.1.4 Extend the generated code . 15

2.2 Bingo Game . 17
2.2.1 Requirement Analysis . 17
2.2.2 API List . 18
2.2.3 Write Contract . 18
2.2.4 Write Test . 21

i

ii

CHAPTER 1

Overview

1.1 Common dependencies

This section is divided into two sub sections: the first concerns the common dependencies that are needed
for running a node. The second shows the extra dependencies needed for building the sources and/or smart
contract development.

1.1.1 Pre-setup for Windows users

A convenient tool for Windows users is Chocolatey for installing dependencies. Follow the installation
instructions below (see here for more details Chocolatey installation):

Open and administrative Powershell and enter the following commands:

Set-ExecutionPolicy AllSigned
or
Set-ExecutionPolicy Bypass -Scope Process

Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).
↪→DownloadString('https://chocolatey.org/install.ps1'))

Later, Chocolatey can be very useful for installing dependencies on Windows systems.

1.1.2 Pre-setup for macOS users

It is highly recommended that you install Homebrew (or simply Brew) to quickly and easily setup
dependencies (see here for more details Homebrew install page). Open a terminal and execute the
following command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
↪→install)"

1

https://chocolatey.org/install
https://www.digitalcitizen.life/ways-launch-powershell-windows-admin
https://brew.sh/

AElf, Release 0.6.0

1.1.3 Node js

Next install nodejs by following the instructions here (see here for more details Nodejs):

On macOS:

brew install node

On Windows:

choco install nodejs

On Linux:

sudo apt-get install nodejs

1.2 Building sources and development tools

You only need to follow this section if you intend to build AElf from the sources available on Github or if
you plan on doing smart contract development.

1.2.1 Windows build tools

A dependency needed to build AElf from the command line under Windows is Visual Studio Build Tools.
The easiest way is to use the Visual Studio Installer:

If you already have an edition of Visual Studio installed, open the Visual Studio Installer and add the
Desktop development with C++ workload:

If you don’t have any of the Visual Studio editions installed:

• you can download it here Visual Studio Community Edition for free and after the installation add
the Desktop development with C++ workload.

2 Chapter 1. Overview

https://nodejs.org/en/download/
https://visualstudio.microsoft.com/fr/downloads/?rr=https%3A%2F%2Fwww.google.com%2F

AElf, Release 0.6.0

• or if you don’t need or want a full blown installation of Visual Studio, you can download the build
tools here: Download Page. Scroll down and under the section Tools for Visual Studio 2019 download
the build tools for Visual Studio:

After the installation open Visual Studio Installer, locate and install the C++ build tools.

1.2.2 Git

If you want to run a node or use our custom smart contract environment, at some point you will have to
clone (download the source code) from AElf repository. For this you will have to use Git since we host our
code on GitHub.

Click the following link to download Git for your platform (see here for more details Getting Started -
Installing Git):

On macOS:

brew install git

On Windows:

choco install git

On Linux:

sudo apt install git-all

1.2.3 Development framework - dotnet core sdk

Most of AElf is developed with dotnet core, so you will need to download and install the .NET Core SDK
before you start:

Download .NET Core 3.1

For now AElf depends on version 3.1 of the SDK, on the provided link find the download for your platform
(for Windows and macOS the installer for x64 is the most convenient if your platform is compatible - most
are these days), the page looks like this:

1.2. Building sources and development tools 3

https://visualstudio.microsoft.com/downloads/#other
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://dotnet.microsoft.com/download/dotnet-core/3.1

AElf, Release 0.6.0

Wait for the download to finish, launch the installer and follow the instructions (for AElf all defaults
provided in the installer should be correct).

To check the installation, you can open a terminal and run the dotnet command. If everything went fine it
will show you dotnet options for the command line.

1.2.4 Protobuf

Depending on your platform, enter one of the following commands (see here for more details Protobuf
Github):

On Windows, open a Powershell and enter the following commands:

4 Chapter 1. Overview

https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf

AElf, Release 0.6.0

choco install protoc --version=3.11.4 -y
choco upgrade unzip -y

On Linux:

Make sure you grab the latest version
curl -OL https://github.com/google/protobuf/releases/download/v3.11.4/protoc-3.11.4-
↪→linux-x86_64.zip

Unzip
unzip protoc-3.11.4-linux-x86_64.zip -d protoc3

Move protoc to /usr/local/bin/
sudo mv protoc3/bin/* /usr/local/bin/

Move protoc3/include to /usr/local/include/
sudo mv protoc3/include/* /usr/local/include/

Optional: change owner
sudo chown ${USER} /usr/local/bin/protoc
sudo chown -R ${USER} /usr/local/include/google

on macOS:

brew install protobuf@3.11
brew link --force --overwrite protobuf@3.11

1.3 Setup Boilerplate

1.3.1 Clone the repository

The following command will clone Boilerplate code into a folder, open a terminal and enter the following
command:

git clone https://github.com/AElfProject/aelf-boilerplate

The boilerplate repo contains a framework for easy smart contract development as well as examples (some
explained in this series of articles).

1.3.2 Build and run

Open the project

If not already done, open vscode and open the Boilerplate folder. If asked to add some “required assets”
say yes. There may also be some dependencies to restore: for all of them, choose Restore.

1.3. Setup Boilerplate 5

https://github.com/AElfProject/aelf-boilerplate

AElf, Release 0.6.0

Open vscode’s Integrated Terminal and build the project with the following command. Note: you can
find out more about vscode’s terminal here.

As stated earlier, Boilerplate takes care of the C# code generation and thus has a dependency on protobuf.
If you don’t already have it installed, you can refer to the guide for manually install.

Build and run

The next step is to build all the contracts in Boilerplate to ensure everything is working correctly. Once
everything is built, we’ll run as below

enter the Launcher folder and build
cd chain/src/AElf.Boilerplate.Launcher/

build
dotnet build

run the node
dotnet run --no-build bin/Debug/netcoreapp3.1/AElf.Boilerplate.Launcher

When running Boilerplate, you might see some errors related to an incorrect password, to solve this, you
need to backup your data-dir/keys/ folder and start with an empty keys folder. Once you’ve cleaned the
keys, stop and restart the node with the dotnet run command shown above.

At this point, the smart contracts have been deployed and are ready to be called (Boilerplate has a functioning
API). You should see the node’s logs in the terminal and see the node producing blocks. You can now stop
the node by killing the process (usually control-c or ctrl-c in the terminal).

Run tests

Boilerplate makes it easy to write unit tests for your contracts. Here we’ll take the tests of the
Hello World contract included in Boilerplate as an example. To run the tests, navigate to the
AElf.Contracts.HelloWorldContract.Test folder and run:

cd ../../test/AElf.Contracts.HelloWorldContract.Test/
dotnet test

The output should look somewhat like this, meaning that the tests have successfully executed:

6 Chapter 1. Overview

https://code.visualstudio.com/docs/editor/integrated-terminal
https://github.com/protocolbuffers/protobuf/blob/master/src

AElf, Release 0.6.0

Test Run Successful.
Total tests: 1

Passed: 1
Total time: 2.8865 Seconds

At this point, you have successfully downloaded, built, and run Boilerplate. You have also run the HelloWorld
contract’s tests that are included in Boilerplate. Later articles will show you how to add a contract and its
tests and add it to the deployment process.

Try code generator

Code generation

Navigate to AElf.Boilerplate.CodeGenerator folder and open appsettings.json, modify Content node,
tune New values as you wish.

For example, if you want to develop a NovelWritingContract.

"Contents": [
{
"Origin": "AElf.Contracts.HelloWorldContract",
"New": "Ean.Contracts.NovelWritingContract"

},
{
"Origin": "HelloWorld",
"New": "NovelWriting"

},
{
"Origin": "hello_world",
"New": "novel_writing"

}
],

Run the code generator and then you will find a AElf.Contracts.NovelWritingContract.sln in
aelf-boilerplate\chain, you can use this sln to develop your own smart contract.

enter the Launcher folder and build
cd chain/src/AElf.Boilerplate.CodeGenerator/

build
dotnet build

run the node
dotnet run --no-build bin/Debug/netcoreapp3.1/AElf.Boilerplate.CodeGenerator

Single node contract deployment

With AElf.Contracts.XXContract.sln, you can run project AElf.Boilerplate.XXContract.Launcher
which is newly generated via above step, the XXContract will be automatically deployed in the block of
height 2.

1.3. Setup Boilerplate 7

AElf, Release 0.6.0

Check following code in AElf.Boilerplate.XXContract.Launcher/DeployContractsSystemTransactionGenerator.
cs:

public async Task<List<Transaction>> GenerateTransactionsAsync(Address @from, long␣
↪→preBlockHeight,

Hash preBlockHash)
{

if (preBlockHeight == 1)
{

var code = ByteString.CopyFrom(GetContractCodes());
return new List<Transaction>
{

await _transactionGeneratingService.GenerateTransactionAsync(
ZeroSmartContractAddressNameProvider.Name, nameof(BasicContractZero.

↪→DeploySmartContract),
new ContractDeploymentInput
{

Category = KernelConstants.DefaultRunnerCategory,
Code = code

}.ToByteString())
};

}

return new List<Transaction>();
}

private byte[] GetContractCodes()
{

return ContractsDeployer.GetContractCodes<DeployContractsSystemTransactionGenerator>
↪→(_contractOptions

.GenesisContractDir)["AElf.Contracts.XXContract"];
}

You can customize code in if section to add more actions to deploy more contracts.

For example, you develop two smart contract using one generated sln: XXContract and YYContract, the
deployment code should be like this:

public async Task<List<Transaction>> GenerateTransactionsAsync(Address @from, long␣
↪→preBlockHeight,

Hash preBlockHash)
{

if (preBlockHeight == 1)
{

var xxCode = ByteString.CopyFrom(GetContractCodes("AElf.Contracts.XXContract"));
var yyCode = ByteString.CopyFrom(GetContractCodes("AElf.Contracts.YYContract"));
return new List<Transaction>
{

await _transactionGeneratingService.GenerateTransactionAsync(
ZeroSmartContractAddressNameProvider.Name, nameof(BasicContractZero.

↪→DeploySmartContract),
new ContractDeploymentInput
{

Category = KernelConstants.DefaultRunnerCategory,
(continues on next page)

8 Chapter 1. Overview

AElf, Release 0.6.0

(continued from previous page)

Code = xxCode
}.ToByteString()),

await _transactionGeneratingService.GenerateTransactionAsync(
ZeroSmartContractAddressNameProvider.Name, nameof(BasicContractZero.

↪→DeploySmartContract),
new ContractDeploymentInput
{

Category = KernelConstants.DefaultRunnerCategory,
Code = yyCode

}.ToByteString())
};

}

return new List<Transaction>();
}

private byte[] GetContractCodes(string contractName)
{

return ContractsDeployer.GetContractCodes<DeployContractsSystemTransactionGenerator>
↪→(_contractOptions

.GenesisContractDir)[contractName];
}

Don’t forget to make sure these contracts are referenced by this AElf.Boilerplate.XXContract.Launcher
project.

1.3.3 More on Boilerplate

Boilerplate is an environment that is used to develop smart contracts and dApps. After writing and testing
your contract on Boilerplate, you can deploy it to a running AElf chain. Internally Boilerplate will run
an simplified node that will automatically have your contract deployed on it at genesis.

Boilerplate is composed of two root folders: chain and web. This series of tutorial articles focuses on
contract development so we’ll only go into the details of the chain part of Boilerplate. Here is a brief
overview of the folders:

.
��� chain

��� src
��� contract
� ��� AElf.Contracts.HelloWorldContract
� ��� AElf.Contracts.HelloWorldContract.csproj
� ��� HelloWorldContract.cs
� ��� HelloWorldContractState.cs
� ��� ...
��� protobuf
� ��� hello_world_contract.proto
� ��� ...
��� test
� ��� AElf.Contracts.HelloWorldContract.Test
� ��� AElf.Contracts.HelloWorldContract.Test.csproj

(continues on next page)

1.3. Setup Boilerplate 9

AElf, Release 0.6.0

(continued from previous page)

� ��� HelloWorldContractTest.cs
��� ...

The hello world contract and its tests are split between the following folders:

• contract: this folder contains the csharp projects (.csproj) along with the contract implementation
(.cs files).

• protobuf : contains the .proto definition of the contract.

• test: contains the test project and files (basic xUnit test project).

You can use this layout as a template for your future smart contracts. Before you do, we recommend you
follow through all the articles of this series.

You will also notice the src folder. This folder contains Boilerplate’s modules and the executable for the
node.

All production contracts (contracts destined to be deployed to a live chain) must go through a complete
review process by the contract author and undergo proper testing. It is the author’s responsibility to check
the validity and security of his contract. The author should not simply copy the contracts contained in
Boilerplate. It’s the author’s responsibility to ensure the security and correctness of his contracts.

1.3.4 Next

You’ve just seen a short introduction on how to run a smart contract that is already included in Boilerplate.
The next article will show you a complete smart contract and extra content on how to organize your code
and test files.

The main usage of aelf-boilerplate is to develop contracts for AElf blockchains. Once you’ve downloaded or
cloned this project, that process looks something like this:

1. Use AElf.Boilerplate.sln, run project AElf.Boilerplate.Launcher, and try Greeter project lo-
cated in web/greeter to make sure the AElf blockchain can be run in local machine.

2. Use AElf.Contracts.BingoContract.sln, run project AElf.Boilerplate.BingoContract.Launcher,
and try Bingo Game located in web/ReactNativeBingo, similar to the code of Bingo Game, which is
a DApp of the AElf blockchain.

3. Use AElf.Boilerplate.sln, modify the appsettings.json in project
AElf.Boilerplate.CodeGenerator, running this project will generate a contract development
template as well as a new sln file.

4. With the new sln file you can develop your new contract, and build your new contract project will
generate a patched contract dll which can be deployed to AElf TestNet/MainNet.

Besides, we provided demo contracts of most of our AElf Contract Standards(ACS). As shown before,
aelf-boilerplate project is enough for you to getting familiar with AElf contract development, but it has to
say that aelf-boilerplate is a start point of developing AElf contract, not a destination.

But before you either start try Greeter and Bingo Game, or ready to develop a smart contract, you’ll
need to install the following tools and frameworks.

For most of these dependencies we provide ready-to-use command line instructions. In case of problems or
if you have more complex needs, we provide the official link with full instructions.

10 Chapter 1. Overview

CHAPTER 2

Write Contract

2.1 Smart contract implementation

This article will guide you through how to use AElf Boilerplate to implement a smart contract. It takes an
example on the Greeter contract that’s already included in Boilerplate. Based on the concepts this article
presents, you’ll be able to create your own basic contract.

2.1.1 Greeter contract

The following content will walk you through the basics of writing a smart contract; this process contains
essentially four steps:

• create the project: generate the contract template using AElf Boilerplate’s code generator.

• define the contract and its types: the methods and types needed in your contract should be defined
in a protobuf file, following typical protobuf syntax.

• generate the code: build the project to generate the base contract code from the proto definition.

• extend the generated code: implement the logic of the contract methods.

The Greeter contract is a very simple contract that exposes a Greet method that simply logs to the console
and returns a “Hello World” message and a more sophisticated GreetTo method that records every greeting
it receives and returns the greeting message as well as the time of the greeting.

This tutorial shows you how to develop a smart contract with the contract SDK; you can find more details
here. Boilerplate will automatically add the reference to the SDK.

2.1.2 Create the project

With AElf Boilerplate’s code generator, you can easily and quickly set up a contract project. See here for
details.

11

https://docs.aelf.io/en/latest/reference/contract-sdk/index.html

AElf, Release 0.6.0

2.1.3 Defining the contract

After creating the contract project, you can define the methods and types of your contract. AElf defines
smart contracts as services that are implemented using gRPC and Protobuf. The definition contains no logic;
at build time the proto file is used to generate C# classes that will be used to implement the logic and state
of the contract.

We recommend putting the contract’s definition in protobuf folder so that it can easily be included
in the build/generation process and also that you name the contract with the following syntax con-
tract_name_contract.proto:

.
��� Boilerplate

��� chain
��� protobuf

��� aelf
� ��� options.proto // contract options
� ��� core.proto // core blockchain types
��� greeter_contract.proto
��� another_contract.proto
��� token_contract.proto // system contracts
��� acs0.proto // AElf contract standard
��� ...

The “protobuf” folder already contains a certain amount of contract definitions, including tutorial examples,
system contracts. You’ll also notice it contains AElf Contract Standard definitions that are also defined the
same way as contracts. Lastly, it also contains options.proto and core.proto that contain fundamental
types for developing smart contracts, more on this later.

Best practices:

• place your contract definition in protobuf folder.

• name your contract with contractname_contract.proto, all lower case.

Now let’s take a look a the Greeter contract’s definition:

// protobuf/greeter_contract.proto

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

(continues on next page)

12 Chapter 2. Write Contract

AElf, Release 0.6.0

(continued from previous page)

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {

option (aelf.is_view) = true;
}

}

message GreetToOutput {
string name = 1;
google.protobuf.Timestamp greet_time = 2;

}

message GreetedList {
repeated string value = 1;

}

Above is the full definition of the contract; it is mainly composed of three parts:

• imports: the dependencies of your contract.

• the service definition: the methods of your contract.

• types: some custom defined types used by the contract.

Let’s have a deeper look at the three different parts.

Syntax, imports and namespace

syntax = "proto3";

import "aelf/options.proto";

import "google/protobuf/empty.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";

option csharp_namespace = "AElf.Contracts.Greeter";

The first line specifies the syntax that this protobuf file uses, we recommend you always use proto3 for your
contracts. Next, you’ll notice that this contract specifies some imports, let’s analyze them briefly:

• aelf/options.proto : contracts can use AElf specific options; this file contains the definitions. One
example is the is_view options that we will use later.

• empty.proto, timestamp.proto and wrappers.proto : these are proto files imported directly from
protobuf’s library. They are useful for defining things like an empty return value, time, and wrappers
around some common types such as string.

The last line specifies an option that determines the target namespace of the generated code. Here the
generated code will be in the AElf.Contracts.Greeter namespace.

The service definition

2.1. Smart contract implementation 13

AElf, Release 0.6.0

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";

// Actions
rpc Greet (google.protobuf.Empty) returns (google.protobuf.StringValue) { }
rpc GreetTo (google.protobuf.StringValue) returns (GreetToOutput) { }

// Views
rpc GetGreetedList (google.protobuf.Empty) returns (GreetedList) {

option (aelf.is_view) = true;
}

}

The first line here uses the aelf.csharp_state option to specify the name (full name) of the state class.
This means that the state of the contract should be defined in the GreeterContractState class under the
AElf.Contracts.Greeter namespace.

Next, two action methods are defined: Greet and GreetTo. A contract method is defined by three things:
the method name, the input argument(s) type(s) and the output type. For example, Greet requires
that the input type is google.protobuf.Empty that is used to specify that this method takes no arguments
and the output type will be a google.protobuf.StringValue is a traditional string. As you can see with the
GreetTo method, you can use custom types as input and output of contract methods.

The service also defines a view method, that is, a method used only to query the contracts state, and that
has no side effect on the state. For example, the definition of GetGreetedList uses the aelf.is_view option
to make it a view method.

Best practice:

• use google.protobuf.Empty to specify that a method takes no arguments (import google/protobuf/
empty.proto).

• use google.protobuf.StringValue to use a string (import google/protobuf/wrappers.proto).

• use the aelf.is_view option to create a view method (import aelf/options.proto).

• use the aelf.csharp_state to specify the namespace of your contracts state (import aelf/options.
proto).

Custom types

message GreetToOutput {
string name = 1;
google.protobuf.Timestamp greet_time = 2;

}

message GreetedList {
repeated string value = 1;

}

The protobuf file also includes the definition of two custom types. The GreetToOutput is the type returned
by the GreetTo method and GreetedList is the return type of the GetGreetedList view method. You’ll
notice the repeated keyword the GreetedList message. This is protobuf syntax to represent a collection.

Best practice:

14 Chapter 2. Write Contract

AElf, Release 0.6.0

• use google.protobuf.Timestamp to represent a point in time (import google/protobuf/
timestamp.proto).

• use repeated to represent a collection of items of the same type.

2.1.4 Extend the generated code

After defining and generating the code from the definition, the contract author extends the generated code
to implement the logic of his contract. Two files are presented here:

• GreeterContract: the actual implementation of the logic, it inherits from the contract base generated
by protobuf.

• GreeterContractState: the state class that contains properties for reading and writing the state.
This class inherits the ContractState class from the C# SDK.

// contract/AElf.Contracts.GreeterContract/GreeterContract.cs

using Google.Protobuf.WellKnownTypes;

namespace AElf.Contracts.Greeter
{

public class GreeterContract : GreeterContractContainer.GreeterContractBase
{

public override StringValue Greet(Empty input)
{

Context.LogDebug(() => "Hello World!");
return new StringValue {Value = "Hello World!"};

}

public override GreetToOutput GreetTo(StringValue input)
{

// Should not greet to empty string or white space.
Assert(!string.IsNullOrWhiteSpace(input.Value), "Invalid name.");

// State.GreetedList.Value is null if not initialized.
var greetList = State.GreetedList.Value ?? new GreetedList();

// Add input.Value to State.GreetedList.Value if it's new to this list.
if (!greetList.Value.Contains(input.Value))
{

greetList.Value.Add(input.Value);
}

// Update State.GreetedList.Value by setting it's value directly.
State.GreetedList.Value = greetList;

return new GreetToOutput
{

GreetTime = Context.CurrentBlockTime,
Name = input.Value.Trim()

};
}

(continues on next page)

2.1. Smart contract implementation 15

AElf, Release 0.6.0

(continued from previous page)

public override GreetedList GetGreetedList(Empty input)
{

return State.GreetedList.Value ?? new GreetedList();
}

}
}

// contract/AElf.Contracts.GreeterContract/GreeterContractState.cs

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter
{

public class GreeterContractState : ContractState
{

public SingletonState<GreetedList> GreetedList { get; set; }
}

}

Let’s briefly explain what is happening in the GreetTo method:

Asserting

Assert(!string.IsNullOrWhiteSpace(input.Value), "Invalid name.");

When writing a smart contract, it is often useful (and recommended) to validate the input. AElf smart
contracts can use the Assert method defined in the base smart contract class to implement this pattern.
For example, here, the method validates that the input string is null or composed only of white spaces. If
the condition is false, this line will abort the execution of the transaction.

Accessing and saving state

var greetList = State.GreetedList.Value ?? new GreetedList();
...
State.GreetedList.Value = greetList;

From within the contract methods, you can easily access the contracts state through the State property
of the contract. Here the state property refers to the GreeterContractState class in which is defined the
GreetedList collection. The second effectively updates the state (this is needed; otherwise, the method
would have no effect on the state).

Note that because the GreetedList type is wrapped in a SingletonState you have to use the Value
property to access the data (more on this later).

Logging

Context.LogDebug(() => "Hello {0}!", input.Value);

16 Chapter 2. Write Contract

AElf, Release 0.6.0

It is also possible to log from smart contract methods. The above example will log “Hello” and the value of
the input. It also prints useful information like the ID of the transaction. It will print in the console log if
you launch the node with DEBUG mode. This is only for debug use and has no impacts on state at all.

More on state

As a reminder, here is the state definition in the contract (we specified the name of the class and a type) as
well as the custom type GreetedList:

service GreeterContract {
option (aelf.csharp_state) = "AElf.Contracts.Greeter.GreeterContractState";
...

}

// ...

message GreetedList {
repeated string value = 1;

}

The aelf.csharp_state option allows the contract author to specify in which namespace and class name
the state will be. To implement a state class, you need to inherit from the ContractState class that is
contained in the C# SDK (notice the using statement here below).

Below is the state class that we saw previously:

using AElf.Sdk.CSharp.State;

namespace AElf.Contracts.Greeter
{

public class GreeterContractState : ContractState
{

public SingletonState<GreetedList> GreetedList { get; set; }
}

}

The state uses the custom GreetedList type, which was generated from the Protobuf definition at build
time and contained exactly one property: a singleton state of type GreetedList.

The SingletonState is part of the C# SDK and is used to represent exactly one value. The value can be
of any type, including collection types. Here we only wanted our contract to store one list (here a list of
strings).

Note that you have to wrap your state types in a type like SingletonState (others are also available like
MappedState) because behind the scene, they implement the state read and write operations.

2.2 Bingo Game

2.2.1 Requirement Analysis

2.2. Bingo Game 17

AElf, Release 0.6.0

Basic Requirement

Only one rule�Users can bet a certain amount of ELF on Bingo contract, and then users will gain more ELF
or to lose all ELF bet before in the expected time.

For users, operation steps are as follows:

1. Send an Approve transaction by Token Contract to grant Bingo Contract amount of ELF.

2. Bet by Bingo Contract, and the outcome will be unveiled in the expected time.

3. After a certain time, or after the block height is reached, the user can use the Bingo contract to query
the results, and at the same time, the Bingo contract will transfer a certain amount of ELF to the user
(If the amount at this time is greater than the bet amount, it means that the user won; vice versa).

2.2.2 API List

In summary, two basic APIs are needed:

1. Play, corresponding to step 2;

2. Bingo, corresponding to step 3.

In order to make the Bingo contract a more complete DApp contract, two additional Action methods are
added:

1. Register, which creates a file for users, can save the registration time and user’s eigenvalues (these
eigenvalues participate in the calculation of the random number used in the Bingo game);

2. Quit, which deletes users’ file.

In addition, there are some View methods for querying information only:

1. GetAward, which allows users to query the award information of a bet;

2. GetPlayerInformation, used to query player’s information.

Method Parameters Return function
Register Empty Empty register player infor-

mation
Quit Empty Empty delete player informa-

tion
Play Int64Value

anount you debt
Int64Value
the resulting
block height

debt

Bingo Hash
the transaction
id of Play

BoolValue
True indicates
win

query the game’s re-
sult

GetAward Hash
the transaction
id of Play

Int64Value
award

query the amount of
award

GetPlayerInformationAddress
player’s address

Player-
Information

query player’s infor-
mation

2.2.3 Write Contract

18 Chapter 2. Write Contract

AElf, Release 0.6.0

Use the code generator to generate contracts and test projects

Open the AElf.Boilerplate.CodeGenerator project in the AElf.Boilerplate<https://aelf-boilerplate-
docs.readthedocs.io/en/latest/usage/setup.html#try-code-generator>, and modify the Contents node in
appsetting.json under this project:

{
"Contents": [
{
"Origin": "AElf.Contracts.HelloWorldContract",
"New": "AElf.Contracts.BingoContractDemo"

},
{
"Origin": "HelloWorld",
"New": "Bingo"

},
{
"Origin": "hello_world",
"New": "bingo"

}
],

}

Then run the AElf.Boilerplate.CodeGenerator project. After running successfully, you will see a
AElf.Contracts.BingoContractDemo.sln in the same directory as the AElf.Boilerplate.sln is in. After opening
the sln, you will see that the contract project and test case project of the Bingo contract have been generated
and are included in the new solution.

Define Proto

Based on the API list in the requirements analysis, the bingo_contract.proto file is as follows:

syntax = "proto3";
import "aelf/core.proto";
import "aelf/options.proto";
import "google/protobuf/empty.proto";
import "google/protobuf/wrappers.proto";
import "google/protobuf/timestamp.proto";
option csharp_namespace = "AElf.Contracts.BingoContractDemo";
service BingoContract {

option (aelf.csharp_state) = "AElf.Contracts.BingoContractDemo.BingoContractState";

// Actions
rpc Register (google.protobuf.Empty) returns (google.protobuf.Empty) {
}
rpc Play (google.protobuf.Int64Value) returns (google.protobuf.Int64Value) {
}
rpc Bingo (aelf.Hash) returns (google.protobuf.BoolValue) {
}
rpc Quit (google.protobuf.Empty) returns (google.protobuf.Empty) {
}

// Views
(continues on next page)

2.2. Bingo Game 19

AElf, Release 0.6.0

(continued from previous page)

rpc GetAward (aelf.Hash) returns (google.protobuf.Int64Value) {
option (aelf.is_view) = true;

}
rpc GetPlayerInformation (aelf.Address) returns (PlayerInformation) {

option (aelf.is_view) = true;
}

}
message PlayerInformation {

aelf.Hash seed = 1;
repeated BoutInformation bouts = 2;
google.protobuf.Timestamp register_time = 3;

}
message BoutInformation {

int64 play_block_height = 1;
int64 amount = 2;
int64 award = 3;
bool is_complete = 4;
aelf.Hash play_id = 5;
int64 bingo_block_height = 6;

}

Contract Implementation

Here only talk about the general idea of the Action method, specifically need to turn the code:

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.
BingoGameContract/BingoGameContract.cs

Register & Quit

Register�

• Determine the Seed of the user, Seed is a hash value, participating in the calculation of the random
number, each user is different, so as to ensure that different users get different results on the same
height;

• Record the user’s registration time.

Quit�Just delete the user’s information.

Play & Bingo

Play�

• Use TransferFrom to deduct the user’s bet amount;

• At the same time add a round (Bount) for the user, when the Bount is initialized, record three
messages� 1.PlayId, the transaction Id of this transaction, is used to uniquely identify the Bout (see
BoutInformation for its data structure in the Proto definition);

• Amount�Record the amount of the bet� 3.Record the height of the block in which the Play transaction
is packaged.

20 Chapter 2. Write Contract

https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs
https://github.com/AElfProject/aelf-boilerplate/blob/dev/chain/contract/AElf.Contracts.BingoGameContract/BingoGameContract.cs

AElf, Release 0.6.0

Bingo�

• Find the corresponding Bout according to PlayId, if the current block height is greater
than PlayBlockHeight + number of nodes * 8, you can get the result that you win or lose;

• Use the current height and the user’s Seed to calculate a random number, and then treat
the hash value as a bit Array, each of which is added to get a number ranging from 0 to 256.

• Whether the number is divisible by 2 determines the user wins or loses;

• The range of this number determines the amount of win/loss for the user, see the note of
GetKind method for details.

2.2.4 Write Test

Because the token transfer is involved in this test, in addition to constructing the stub of the bingo contract,
the stub of the token contract is also required, so the code referenced in csproj for the proto file is:

<ItemGroup>
<ContractStub Include="..\..\protobuf\bingo_contract.proto">
<Link>Protobuf\Proto\bingo_contract.proto</Link>

</ContractStub>
<ContractStub Include="..\..\protobuf\token_contract.proto">
<Link>Protobuf\Proto\token_contract.proto</Link>

</ContractStub>
</ItemGroup>

Then you can write test code directly in the Test method of BingoContractTest. Prepare the two stubs
mentioned above:

// Get a stub for testing.
var keyPair = SampleECKeyPairs.KeyPairs[0];
var stub = GetBingoContractStub(keyPair);
var tokenStub =

GetTester<TokenContractContainer.TokenContractStub>(
GetAddress(TokenSmartContractAddressNameProvider.StringName), keyPair);

The stub is the stub of the bingo contract, and the tokenStub is the stub of the token contract.

In the unit test, the keyPair account is given a large amount of ELF by default, and the bingo contract needs
a certain bonus pool to run, so first let the account transfer ELF to the bingo contract:

// Prepare awards.
await tokenStub.Transfer.SendAsync(new TransferInput
{

To = BingoContractAddress,
Symbol = "ELF",
Amount = 100_00000000

});

Then you can start using the Bingo contract. Register�

await stub.Register.SendAsync(new Empty());

After registration, take a look at PlayInformation:

2.2. Bingo Game 21

AElf, Release 0.6.0

// Now I have player information.
var address = Address.FromPublicKey(keyPair.PublicKey);
{

var playerInformation = await stub.GetPlayerInformation.CallAsync(address);
playerInformation.Seed.Value.ShouldNotBeEmpty();
playerInformation.RegisterTime.ShouldNotBeNull();

}

Bet, but before you can bet, you need to Approve the bingo contract:

// Play.
await tokenStub.Approve.SendAsync(new ApproveInput
{

Spender = BingoContractAddress,
Symbol = "ELF",
Amount = 10000

});
await stub.Play.SendAsync(new Int64Value {Value = 10000});

See if Bout is generated after betting.

Hash playId;
{

var playerInformation = await stub.GetPlayerInformation.CallAsync(address);
playerInformation.Bouts.ShouldNotBeEmpty();
playId = playerInformation.Bouts.First().PlayId;

}

Since the outcome requires eight blocks, you need send seven invalid transactions (these transactions will
fail, but the block height will increase) :

// Mine 7 more blocks.
for (var i = 0; i < 7; i++)
{

await stub.Bingo.SendWithExceptionAsync(playId);
}

Last check the award, and that the award amount is greater than 0 indicates you win.

await stub.Bingo.SendAsync(playId);
var award = await stub.GetAward.CallAsync(playId);
award.Value.ShouldNotBe(0);

22 Chapter 2. Write Contract

	Overview
	Common dependencies
	Pre-setup for Windows users
	Pre-setup for macOS users
	Node js

	Building sources and development tools
	Windows build tools
	Git
	Development framework - dotnet core sdk
	Protobuf

	Setup Boilerplate
	Clone the repository
	Build and run
	More on Boilerplate
	Next

	Write Contract
	Smart contract implementation
	Greeter contract
	Create the project
	Defining the contract
	Extend the generated code

	Bingo Game
	Requirement Analysis
	API List
	Write Contract
	Write Test

